Name	Hour	
Conservation of M		
Momentum of Collisions		
	of momentum. The total momentum of a system remains. (Momentum lost by one object is gained by another)	
total initi	al p = total tinal p tarting p = Ending p	
3 Types of Collision: 1. Explosion: When 1 before	two objects start at rest a explode apart	
	$= \leftarrow \rightarrow $ $m_1(-vi) + m_2 V_2$ $M_1 V_1 = M_2 V_2$	
2. Elastic Collision: <u>tu</u> buling: before	after Objects bounce off each other after collision	

3. Inelastic Collision: the two objects stick together after collision

$$m_1 V_{ij} + M_2 V_{2j} = (m_1 + m_2) V_{f}$$

Name	Hour
	110d1

Conservation of Momentum Example:

1. A 76 kg boater, initially at rest in a stationary 45 kg boat, steps out of the boat and onto the dock. If the boater moves out of the boat with a velocity of 2.5 m/s to the right, what is the final velocity of the boat?

Type of collision:
$$explosion$$

Equation: $m \cdot Vi = m \cdot 2Vz$
 $(76 \text{ kg}(2.5 \text{ m/s}) = (45 \text{ kg})Vz$
 $Vz = 4.22 \text{ m/s}$

2. A 1500 kg car traveling at 15 m/s collides with a 4500 kg truck that is initially at rest at a stoplight. The car and truck stick together and move together after the collision. What is their final velocity?

Type of collision: inelastic

Equation:
$$m_1 V_{ij} + m_2 V_{2j} = (m_1 + m_2) V_f$$

(1500 kg) (15m/s) + (4500 kg)(0) = (1500 + 4500) V_f

22500 kgm/s = 6000 V_f

V_f = 3.75 m/s

3. A 4 kg bowling ball moving at 8.0 m/s has a head on collision with another bowling ball (mass = 6 kg) initially at rest. The first ball stops after the collision. Find the velocity of the second ball.

Type of collision: elastic

Equation:
$$m_1 Vii + m_2 V2i = m_1 Vif + m_2 V2f$$
 $(4kg)(8mls) + (bkg)(0) = 0 + bkgVf$
 $32kgmls = bkgVf$
 bkg
 $Vf = 5.33mls$